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-----------------------------------------------------------------------------ABSTRACT---------------------------------------------------------------------- 
The RSA cryptosystem, invented by Ron Rivest, Adi Shamir and Len Adleman was first published in the August 1978 
issue of ACM[4 ]. The cryptosystem is most commonly used for providing priva cy and ensuring authenticity of digital data. 
The security level of this algorithm depends on chooing two large prime numbers. But, to handle large prime in personal 
computer is huge time consuming. Further, each and every compiler has a maximum limit to integer handling capability. 
In this paper, an approach has been made to modify trial division technique for implementation of RSA algorithm for large 
numbers beyond the range of a compiler that has been used to implement it. The time complexity of this modified trial 
division method has been calculated using personal computer, at the end for large integer. 
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1. INTRODUCTION 
he requirements of information security within an 
organization have undergone two major changes in the 

last few decades. With the introduction of the computer the 
lead of automated tools for protecting files and other 
information stored on the computer became evident, 
especially the case for a shared system. No one can deny the 
importance of security in data communication and 
networking. Security in networking is based on 
cryptography [7] [8], the science and art of transforming 
messages to make them secure and immune to attack. The 
RSA algorithm is the most popular and proven asymmetric 
key cryptographic algorithm [3]. For larger the primes [9], 
tougher is the factorization [1], [2]. This makes the RSA 
secure. From the study, it is evident that lots of work has 
been done to detect and handle large prime in RSA algorithm 
[12]. One of them is trail division method. In this paper, some 
modification has been done on trail division method. The 
first requirement of RSA algorithm is to choose two prime 
numbers. It can be done by taking two numbers as string and 
to check whether they are prime, modified trial division 
algorithm can be used for this purpose. To do this, first 

requirement is to requirement compute the length of the 
string, if it is less than 2*n-6 where n denotes the maximum 
number of decimal digits that a particular compiler supports 
then to convert the string into array of integers else to 
subtract iteratively the numbers for which the given string 
has to be compared until the reminder is less than the 
number which is the required modulus. If all the moduli 
computed are non-zero then the number is prime. After 
getting the two primes the product n=p*q is computed by 
means of adding the partial products. For a chosen e the 
gcd(e, f) is computed. If it is equal to 1 then d is generated 
else the user is asked to choose another e. Finally, by using 
p,q,n,e and d RSA algorithm has been developed. This 
modified trial division method will be much useful in 
handling large primes to be used in RSA.  

2. RSA ALGORITHM 
The RSA algorithm involves three steps: key generation, 
encryption and decryption [10].  
2.1 Key Generation 
RSA involves a public key and a private key. The public key 
can be known to everyone and is used for encrypting 
messages. Messages encrypted with the public key can only 
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be decrypted using the private key. The keys for the RSA 
algorithm are generated the following way: 
Choose two dis tinct prime numbers p and q. For security 
purposes, the integers p and q should be chosen uniformly 
at random and should be of similar bit-length. Prime integers 
can be efficiently found using a Primality test. Compute n = 
p*q. n is used as the modulus for both the public and private 
keys. Compute the totient:  f (n) = (p-1)*(q-1). Choose an 
integer e such that 1<e< f (n), and e and  f (n) are coprime. e 
is released as the public key exponent. Choosing e having a 
short addition chain results in more efficient encryption. 
Determine d (using modular arithmetic) which satisfies the 
congruence relation d*e = 1(mod f (n)). d is kept as the 
private key exponent. The public key consists of the 
modulus n and the public (or encryption) exponent e. The 
private key consists of the modulus n and the private (or 
decryption) exponent d which must be kept secret. 
2.2 Encryption 
Alice transmits her public key (n,e) to Bob and keeps the 
private key secret. Bob then wishes to send message M to 
Alice [12], [10], [5]. He first turns M into an integer 0<m< n 
by using an agreed-upon reversible protocol known as a 
padding scheme . He then computes the ciphertext c 
corresponding to: c=me(mod n). This can be done quickly 
using the method of exponentiation by squaring. Bob then 
transmits c to Alice. 
2.3 Decryption 
Alice can recover m from c by using her private key exponent 
d by the following computation: m=cd(mod n). 
Given m, she can recover the original message M by 
reversing the padding scheme. 
The above decryption procedure works because: 
m=( me)d(mod n) =med(mod n). 
Now, since e*d=1+k * f (n),  
med=m1+ k* f (n) =m*(mk) f (n) =m(mod n) 
The last congruence directly follows from Euler's theorem 
when m is relatively prime to n. By using the Chinese 
remainder theorem it can be shown that the equations hold 
for all m. This shows that the original message is retrieved: 
cd=m(mod n). 

3. METHODS  FOR ARITHMETIC OPERATIONS OF TWO 
LARGE NUMBERS 
3.1 Addition 
Step 1 Take two numbers as Strings as input. 
Step 2 Compute the length of two Strings. 
Step 3 If the lengths are equal go to Step 4 else add zeros in 
front of the String of smaller length. 
Step 4 If the lengths of two Strings are equal add a zero to 
each String which will handle if there is a carry. 
Step 5 Take another two arrays of integer of the length equal 
to the present length of the Strings. Initialize one of them to 
all zeros which will hold the carry if any.  
Step 6 The elements of the array which will hold the sum, is 
obtained by adding the elements of the initial two integer 
arrays and the carry array. 
Step 7 The carry array elements are obtained by the 
operation as carry [i-1] = (a[i] + b[i])/10 where I denotes the 
index. 
Step 8 Convert the array of sum to String and return. 

3.2 Subtraction 
Step 1 Take two numbers as Strings as input. 
Step 2 Compute the length of two Strings. 
Step 3 If the lengths are equal go to Step 4 else add zeros in 
front of the String of smaller length. 
Step 4 Take another array of integers of the number elements 
equal to the length of the Strings at present. 
Step 5 If there is a borrow, subtract one from the previous 
indexed element if it is greater than zero els e set the previous 
element to 9 and continue Step5 until there is any element 
greater than zero. 
Step 6 Convert the result obtained to String and return. 
3.3 Multiplication 
Step 1 Take the two numbers as Strings as input. 
Step 2 Convert the Strings into array of characters and 
subsequently into array of numbers. 
Step 3 Compute partial products for each of the element and 
add the partial product to a variable initially set to zero. 
Step 4 The partial product is computed with the above 
addition algorithm. 
Step 5 The final sum is the required product. 
3.4 Division 
3.4.1 Quotient 
Step 1 Take the two numbers as Strings as input. 
Step 2 If the length of the first (l1) to the second (l2) String 
differs by 1or less compute quotient by using a loop which 
counts the number of iterations for the subtraction of divisor 
from the dividend else go to Step 3. 
Step 3 Take the substring of first l2+1 characters of the first 
String. Compute the quotient by using a loop which counts 
the number of iterations for the subtraction of divisor from 
the present dividend of length l2+1, and find the remainder.  
Step 4 Concatenate the next positioned character in the first 
String to the remainder and find the quotient for the second 
String and the new String obtained. 
Step 5 Concatenate the quotient obtained to the previous 
quotient. Compute remainder. 
Step 6 Repeat Steps 4 and 5 until no characters left for first 
String. 
Step 7 The quotient obtained in the final step is the required 
quotient. 
3.4.2 Remainder 
Step 1 Take the two numbers as  Strings as input. 
Step 2 If the length of the first (l1) to the second (l2) String 
differs by 1or less compute quotient by using a loop which 
counts the number of iterations for the subtraction of divisor 
from the dividend else go to Step 3. 
Step 3 Take the substring of first l2+1 characters of the first 
String. Compute the quotient by using a loop which counts 
the number of iterations for the subtraction of divisor from 
the present dividend of length l2+1, and find the remainder.  
Step 4 Concatenate the next positioned character in the first 
String to the remainder and find the quotient for the second 
String and the new String obtained. 
Step 5 Concatenate the quotient obtained to the previous 
quotient. Compute remainder. 
Step 6 Repeat Steps 4 and 5 until no characters left for first 
String. 
Step 7 The remainder obtained in the final step is the 
required remainder. 
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3.5 GCD 
Step 1 Take the two numbers as String. 
Step 2 Compute the modulus and swap the divisor and 
remainder as dividend and divisor. Repeat Step 2 until the 
modulus is zero. 
Step 3 Return the divisor. 

4. IDENTITIES 
The existing trial division method cannot be applied for large 
integer if it is beyond the compiler limit. To Compute 
(a*b)%n and (a+b)%n for large numbers a and b as follows. 
From division algorithm [11], [6] it can be expressed any 
integer as a= p1*n+q1; b=p2*n+q2; for a given n, a, and b 
and for some p1, q1, p2, q2. So, (a*b)%n and (a+b)%n can be 
rewritten as (a*b)%n=(( p1*n+q1)*( p2*n+q2))%n = 
(p1*p2*n2 + p1*q2*n + p2*q1*n + q1*q2)%n  
=(q1*q2)%n=((a%n)*(b%n))%n 
(a+b)%n= ((p1+p2)*n+q1+q2)%n = (q1+q2)%n = 
((a%n)+(b%n))%n. Hence, 
(a*b)%n = ((a%n)*(b%n))%n 
(a+b)%n = ((a%n)+(b%n))%n 

5. MODIFIED TRIAL DIVISION ALGORITHM 
Step 1 Take the input number as String. 
Step 2 Convert the String into array of integers. 
Step 3 Contrary to the exact square root for large number a 
number greater than the square root near the exact square 
root is taken instead which is cost effective with respect to 
time. 
Step 4 Compute the length of the String. If it is less than 
twice the number of digits that a particular compiler 
supports, then go to Step 5 else go to Step 9. 
Step 5 Take a function which will take the value of the array 
element, the index and the length of the String concerned 
and the number with which the modulus is to be calculated. 
Increment the index. 
Step 6 Multiply the element with 10 find the modulus and 
perform the operation iteratively and subtract 1 from length-
index until it reaches 0. Compute moduli each time and add, 
compute the modulus of the sum. Go to Step 3 until all 
elements are exhausted. 
Step 7 The final modulus obtained is the required modulus 
compared to zero. If the modulus results to zero, it is not 
prime. 
Step 8 The number of numbers with which the input number 
is to be compared is equal to near_square -root(input 
number)/2; only the odd numbers below near_square-
root(input number) are only compared. 
Step 9 Compute the modulus for large number. If it matches 
the String “0” in any case the number is composite. If the 
number space for the number concerned is exhausted and 
none gives the modulus as “0”, hence the number is prime. 

6. RSA FOR LARGE NUMBERS BEYOND THE RANGE OF 
COMPILER LIMIT USING MODIFIED TRIAL DIVISION 
ALGORITHM 
6.1 Key Generation 

Step 1  Choose two large number beyond the compiler limit 
as strings  
Step 1.1 If the length is less than 2*n-6 where n denotes the 
maximum number of decimal digits that a particular compiler 
supports convert the strings into array of integers else 
subtract the numbers, below the near_squarertoot of the 
number equivalent o he string, iteratively from the strings 
following the method of subtraction (3.1) with which the 
given string is to be compared.  
Step 1.2 The moduli obtained (3.4.1) for each step is 
compared to 0. If in any case the modulus turns out to be 
zero the number is not prime, else the number is prime.   
Step 1.3  If the length is less than 2*n-6, the elements of the 
array along with the index and length of th string are fed to a 
function as arguments which returns the modulus. If each of 
the moduli tuns out to be non-zero the number is prime else 
the number is not prime. 
Step 1.4 Compute the above methods for both the strings 
and thus p and q are selected.   
Step 2 Convert p an q into array of integers. 
Step 3 To compute the value of n=p*q . It is computed with 
the implementation of the partial product and adding the 
partial products by adding element by element and handling 
the carry if any(3.3). 
Step 4 Compute the value of f =(p-1)*(q-1). The subtraction 
of 1 from p and q are obtained by the implementation of the 
subtraction of large numbers where subtraction is done by 
element by element and the borrow is handled likewise. Then 
f  is computed with the multiplication with partial products 
(3.2). 
Step 5 Compute the value of e relatively prime to f less than 
f . The gcd(e, f) is calcuted and convert the result to String, 
compare it to “1”. If it is equal to 1 e is chosen (3.5). 
Step 6 Compute the value of d by using a loop for k in the 
equation e*d=1+ f*k. If d is equal to 1 go to Step 5. 
6.2 Encryption 
Step 1 Input a plain text file. 
Step 2 Convert the integer value from file into String. 
Step 3 Convert the String into array of integers. 
Step 4 Compute arithmetic operations as per RSA algorithm 
on the array of numbers (4). 
Step 5 Obtain the result as an array of integers. 
Step 6 Convert the array of integers as String to write to the 
output file as cipher text . 
6.3 Decryption 
Step 1 Input a cipher text file. 
Step 2 Convert the integer value from file into String. 
Step 3 Convert the String in to array of integers. 
Step 4 Compute arithmetic operations as per RSA algorithm 
on the array of numbers (4). 
Step 5 Obtain the result as an array of integers. 
Step 6 Convert the array of integers as String to write to the 
output file as plain text . 
6.4 Exa mple 
Choose two numbers  
p = 796633327000000971 
q = 908819900008701977 
Check the first number: 
1. The number is not divisible by 2. 
2. Check the number if it is divisible by 3. 



Int. J. Advanced Networking and Applications   
Volume: 01, Issue: 04, Pages: 210-216   (2009) 

213

This checking will continue until the final modulus for each 
testing number is non-zero upto a number near to the square 
root = 899999999.   
    796633327000000971      element    index     length 
= 700000000000000000    =     7             0           18   
+   90000000000000000    =     9             1           18 
+     6000000000000000    =     6             2           18 
+       600000000000000    =     6             3           18 
+         30000000000000    =     3             4           18 
+           3000000000000    =     3             5           18 
+             300000000000    =     3             6           18 
+               20000000000    =     2             7           18 
+                 7000000000    =     7             8           18 
+                                   0    =     0             9           18 
+                                   0    =     0           10           18 
+                                   0    =     0           11           18 
+                                   0    =     0           12           18 
+                                   0    =     0           13           18 
+                                   0    =     0           14           18 
+                               900    =     9           15           18 
+                                 70    =     7           16           18 
+                                   1    =     1           17           18 
(7×1017) %3=((7%3)×1017)%3=(1×1017)%3=1×1=1  
(9×1016)%3=((9%3)×1016)%3=(0×1016)%3=0×1=0 
.                                                                                                =0 
.                                                                                               =0 
.                                                                                                . 
(9 × 102)%3 = ((9%3) ×102)%3  = (0  ×102)%3 = 
(0×10)%3=(0×10 )%3 = 0      
(7×10)%3 = ((7%3) ×(10%3))%3 =1×1=1 
(1%3)=1.  
 
Final modulo = 
(1+0+0+0+0+0+0+2+1+0+0+0+0+0+0+0+1+1)%3=6%3=0 
So the number is not prime, so we choose the nearest prime 
number 796633327000000969. 
Check the second number. 
1. The number is not divisible by 2 
2. Check the number if it is divisible by 3 
3. Next check with 5, then with 7 and so on if any of the final 
moduli is zero, then the upto 999999999 . 
    908819900008701977      element    index     length 
= 900000000000000000    =     9             0           18   
+                                   0    =     0             1           18 
+     8000000000000000    =     8             2           18 
+       800000000000000    =     8             3           18 
+         10000000000000    =     1             4           18 
+           9000000000000    =     9             5           18 
+             900000000000    =     9             6           18 
+                                   0    =     0             7           18 
+                                   0    =     0             8           18 
+                                   0    =     0             9           18 
+                                   0    =     0           10           18 
+                       8000000    =     8           11           18 
+                         700000    =     7           12           18 
+                                   0    =     0           13           18 
+                             1000    =     1           14           18 
+                               900    =     9           15           18 
+                                 70    =     7           16           18 
+                                   7    =     7           17           18 

This number turns out to be divisible by 61. So, the nearest 
prime  number is 908819900008701973. 
 
Two primes are chosen as:  
p = 796633327000000969 
q = 908819900008701973 
n = 796633327000000969*908819900008701973 
                                                       796633327000000969 
                                                 ×    908819900008701973 
 

Table 1 Computing Multiplication 
 

Partial Products Computing Partial Products [Table 2.1(a)&(b)] 

2389899981000002907 796633327000000969+796633327000000969+ 
796633327000000969 

55764332890000067830 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969 

716969994300000872100 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969 

796633327000000969000 796633327000000969 
0  

557643328900000678300000 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969 

6373066616000007752000000 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969 

0  
0  
0  

0  

716969994300000872100000000000 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969 

7169699943000008721000000000000 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969 

7966333270000009690000000000000 796633327000000969 

6373066616000007752000000000000
00 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969 

6373066616000007752000000000000
000 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969 

0  

7169699943000008721000000000000
00000 

796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969+796633327000000969+ 
796633327000000969 

 

n = 2389899981000002907 + 55764332890000067830 + 
716969994300000872100 + 796633327000000969000 + 0 + 
557643328900000678300000 +  6373066616000007752000000 + 
0 + 0 + 0 + 0 + 716969994300000872100000000000 +  
7169699943000008721000000000000 + 
7966333270000009690000000000000 + 
637306661600000775200000000000000 + 
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6373066616000007752000000000000000 + 0 + 
716969994300000872100000000000000000  
(Likewise Table 2.1a and Table 2.1b) 
n = 723996220587740462348937279432211837 
 
To compute 796633327000000969 + 796633327000000969 + 
796633327000000969 
 
Table 2.1a Computing Addition  
 

C 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 
N1 0 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9 
N2 0 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9 
R 1 5 8 6 6 6 6 6 5 4 0 0 0 0 0 1 3 8 

 

Table 2.1b Computing Addition 
 

C 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 
N1 0 1 5 8 6 6 6 6 6 5 4 0 0 0 0 0 1 3 8 
N2 0 0 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9 
R 0 2 3 8 3 2 9 9 9 8 1 0 0 0 0 0 2 0 7 

 
 
 

Table 2.1c Computing Subtraction 
 

N1 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 9 
N2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
R 7 9 6 6 3 3 3 2 7 0 0 0 0 0 0 6 8 

 

f = (p -1)*(q-1) = (796633327000000969-
1)*(908819900008701973-1) [Table 2.1c] 
   = 796633327000000968*908819900008701972 (Likewise 
Table 2.1a and Table 2.1b ) 
   = 723996220587740460643484052423508896 
Choose e relatively prime to f and less than f. 
e is chosen as e = 597730678320781 
gcd(e, f ) = gcd ( 597730678320781, 
 723996220587740460643484052423508896) 
              =gcd(723996220587740460643484052423508896, 
597730678320781) 
              =gcd(597730678320781,522314937592172) 
              =gcd(522314937592172, 75415740728609) 
              =gcd(75415740728609, 69820493220518) 
                =………………………. 
                =………………………. 
                =……………………… 
                =……………………… 
                =gcd(1,1) 
                =1 
From the equation e*d=1+ f*k 
597730678320781*350096237795509290502435457320771333 
= 
1+723996220587740460643484052423508896*28903916311218
2 
d is calculated as d = 
350096237795509290502435457320771333 

7. RESULTS  

The input plain text , cipher text and text after decryption is 
describe in section 7.1 and   the time is needed in different 
operation is described in section 7.2. To test a number is 
prime or not is given in table 4. The encryption and 
decryption time for different file size is furnished table 4.     
 

7.1 Encryption and Decryption 
Encryption 
A text file is taken as input which contains the plain text: 
"This is an implementation of RSA algorithm. 
The cipher text is : 
321608683768299940577790416009023267545400903235839835
977883535534127551 
383486098927907800508745124527030055372567718327019004
888049249883114843 
305006651068030347376681625720317589383486098927907800
508745124527030055 
372567718327019004888049249883114843305006651068030347
376681625720317589 
200616657248894833780707759391432479109429525023508137
678629803185561222 
305006651068030347376681625720317589383486098927907800
508745124527030055 
238921368540739032221761368410667592927949805042214929
71328847789561009 
541356901940365578531790042510415181242765624815106139
82071022901458181 
238921368540739032221761368410667592242765624815106139
82071022901458181 
109429525023508137678629803185561222247666352896593797
503075179955093248 
200616657248894833780707759391432479247666352896593797
503075179955093248 
383486098927907800508745124527030055180575332595018557
036123611699469825 
109429525023508137678629803185561222305006651068030347
376681625720317589 
180575332595018557036123611699469825489322524165024894
693552060448279197 
305006651068030347376681625720317589628929105710247896
601309516101856837 
500940395461107237765769724850388916349586590894424571
185583633154317592 
305006651068030347376681625720317589200616657248894833
780707759391432479 
541356901940365578531790042510415181509158580789464414
827778737891311194 
180575332595018557036123611699469825125599208770405882
129774350203584684 
383486098927907800508745124527030055247666352896593797
503075179955093248 
545400903235839835977883535534127551238921368540739032
221761368410667592 
212411490368907346642902570781305521 
Decryption  
The plain text recovered as: 
This is an implementation of RSA algorithm. 
7. 2 Time for different operation  
 
Table 3. Time to test primes using modified trial division 
 

Digits Prime Time to Compute 

3 101 <1 sec 
3 751 <1 sec 
4 1201 < 1sec 
4 9091 < 1 sec 
5 10753 < 1 sec 
5 76801 < 1 sec  
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6 160001 < 1 sec 
6 980801 < 1 sec 
7 1146881 < 1 sec 
7 9011201 < 1 sec 
8 12600001 < 1 sec 
8 99328001 < 1 sec 
9 104857601 < 1 sec 
9 756100001 < 1 sec 
10 1027200001 < 1 sec 
10 9524994049 1 sec 
11 10256250001 1 sec 
11 97656250001 2 secs 
12 100907200001 2 secs 
12 947147262401 3 secs 
13 1079916250001 5 secs 
13 9982699110401 8 secs 
14 12123750000001 10 secs 
14 87770788000001 25 secs 

15 101702694862849 53 secs 

15 944377409044481 113 secs 
16 1136591040000001 127 secs 

16 9502720000000001 305 secs 

17 12136000000000001 702 secs 

17 95348273971200001 1410 secs 
18 100663296000000001 1630 secs 
18 908800000000000001 3990 secs 

Table 4. Time to encrypt and decrypt Text files of different 
sizes  
 

File Size Encryption Time Decryption Time 

1 KB 4 secs 210 secs 
2 KB 8 secs 420 secs 
3 KB 12 secs 641 secs 
4 KB 16 secs 855 secs 
5 KB 20 secs 1070 secs 
6 KB 24 secs 1290 secs 
7 KB 28 secs 1500 secs 
8 KB 32 secs 1721 secs 
9 KB 36 secs 1943 secs 
10 KB 39 secs 2174 secs 

8. CONCLUSION AND FUTURE WORKS  
In this paper, modified trial division algorithm has been used 
to find large prime numbers. Even of the integer number be 
beyond the compiler limit. The time complexity of this 
algorithm will be always less than the existing trial division 
algorithm as to check for primality only odd numbers have 
been used. This method can be used in personal computer 
for implementation of RSA algorithm with large integer. 
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